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The motion of a rigid disk-shaped particle with rounded edges, which fits closely in 
the space between two parallel flat plates, and which is suspended in a viscous fluid 
subject to an imposed pressure gradient, is analysed. This problem is relevant to the 
squeezing of red blood cells through narrow slot-like channels which are found in 
certain tissues. Mammalian red cells, although highly flexible, conserve volume and 
surface area as they deform. Consequently, a red cell cannot pass intact through a 
channel which is narrower than some minimum width. In channels that are just wide 
enough to permit cell passage, the cell is deformed into its ‘critical’ shape: a disk 
with rounded edges. In this paper, the fluid mechanical aspects of such motions are 
considered, and the particle is assumed to be rigid with the critical shape. The 
channel cross-section is assumed to be rectangular. The flow of the suspending fluid 
is described using lubrication theory. Use of lubrication theory is justified by 
considering the motion of a circular cylinder between parallel plates. For disk-shaped 
particles, approximate solutions are obtained by applying lubrication equations 
throughout the flow domain. In the region beyond the particle, this is equivalent to 
assuming a Hele-Shaw flow. More accurate solutions are obtained by including 
effects of boundary layers around the particle and at  the sides of the channel. 
Pressure distributions and particle velocities are computed as functions of 
geometrical parameters, and it is shown that the particle may move faster or slower 
than the mean velocity of the surrounding fluid, depending on the channel 
dimensions. 

1. Introduction 
The aim of this paper is to develop theoretical models for the motion of rigid disk- 

shaped particles through uniform channels with rectangular cross-sections of width 
d and ‘span’ a, where d /a  + 1. In the spleen and in the bone marrow, red blood cells 
encounter narrow passages which may have the approximate form of slots. The 
spleen serves as a filter, and it is believed that as red cells age, they lose flexibility, 
become stuck in the spleen and are removed from the circulatory system. Since red 
cells deform a t  constant volume and surface area, there is a minimum spacing 
between the two plates below which passage of intact cells is not possible. In channels 
that are just wide enough to permit cell passage, the cell is deformed into its ‘critical ’ 
shape: a disc with rounded edges (Halpern 1989). Here, we consider the near-critical 
case in which the distance between the two plates is slightly larger than the width 
of the particle of critical shape. 

Halpern & Secomb (1989) analysed the squeezing of red blood cells through 
cylindrical capillaries with near-minimal diameters, and showed that the behaviour 
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of flexible cells was closely approximated by the behaviour of rigid cells with the 
critical shape, for which closed-form lubrication solutions are available (Ozkaya & 
Skalak 1983; Ozkaya 1986). By analogy, we expect that the motion of rigid particles 
with the critical shape approximates the motion of flexible cells in parallel-sided 
channels of near minimal widths. Assuming rigid particles simplifies the analysis of 
the fluid mechanical aspects of the problem. Evidence supporting this assumption is 
provided by Halpern (1989). As in other analyses of red blood cell motion in narrow 
conduits (Secomb et al. 1986; Halpern & Secomb 1989), inertial effects are neglected 
and lubrication theory is used since the gaps between the particle and the plates are 
narrow. 

Red blood cells deform a t  constant volume and almost constant surface area. 
These constraints limit the possible shapes of a red blood cell lying between two 
parallel plates. Consequently, there exists a minimum distance between the two 
plates through which a cell may pass without increasing its volume and surface area. 
The shape in this limiting case can be determined using calculus of variations 
(Halpern 1989), and is a disk with a rounded edge (figure 3). The profile of the edge 
is closely approximated by a semicircle. I n  this approximation, the surface area and 
volume are: 

where 2w is the width of the particle and r1 is the radius of the disk part. For typical 
dimensions V = 90 pm3 and S = 135 pm2, r1 = 3.25 pm and w = 0.91 pm. 

S = 21c(r:+nwrl+2w2), V = nw(2r~+$n2+1cwrl), 

2. Formulation using lubrication theory 
I n  our analysis of the motion of disk-shaped particles, equations of lubrication 

theory are applied throughout the flow domain. This approximation greatly 
simplifies the analysis. Before formulating the equation, we present evidence to 
justify the approximation. Since the rim of the disk has a semicircular cross-section, 
the flow near the rim is closely related to the flow around a cylinder between two 
parallel plates. The application of lubrication theory to this flow is considered first, 
and then further evidence based on other studies is presented. 

2.1. A rigid cylinder between two plates 
We consider a freely suspended, neutrally buoyant cylinder of diameter Ad midway 
between two plates a distance d apart, moving with velocity -up as shown in figure 
1. We use coordinates (x, y ,  z )  fixed with the particle, and non-dimensionalize : X = 
x/d, 2 = z/d,  U = u/uo, U p  = up/uo and P = p/(12puo/d), where u is the fluid 
velocity in the x direction, -uo is the mean fluid velocity relative to the plates, and 
p is the pressure. Under the assumptions of lubrication theory, P = P ( X )  in the gaps, 
and the momentum equation in the X-direction is 

d2 U dP 
dx’ 

-= 12- 

By symmetry, only the lower gap has to be analysed. The boundary conditions are 
that U = 0 on the cylinder (2 = H ,  where H ( X )  is the dimensionless gap width), U = 
U p  on the plate (2 = 0 ) ,  and U +  U p -  1 as X +-& co, where B is the mean fluid 
velocity. From (2.1), 

dP 
dx U = 6 - - Z ( Z - H ) + U p  
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c 

X 

FIGURE 1.  Cylinder between parallel plates, showing geometric variables. 

The flow rate in the gap is 

dP 
dx 

Q = UdZ = -H3-++HUp. 

Hence the pressure satisfies 
dP 
dx 2 p  
- = 1u H-2-QH-3. 

By continuity, 2Q must be constant, equal to the flow rate at infinity, U p - l .  
From the assumed geometry, 

H = i ( l - h c o s $ ) ,  X = +Asin$, (2 .5 )  
where $ is as defined in figure 1 .  Therefore, 

This is integrated to yield the pressure distribution in the gap: 

p($) = A(up12($)-4Q13($)), 

where 
cos t 

dt (n = 1 , 2 , 3 ) ,  

and, using a transformation due to Sommerfeld (1904) ,  

where (2.10) 

The pressure drop, AP, across the particle is then: 

AP = 2A[(12(+n) - 213(+n)) up + Z,(+n)]. (2.11) 
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FIGURE 2. (a) Cylinder velocity U p  and ( b )  additional pressure drop AP due to cylinder, as functions 
of minimum gap width (1 - A )  for a cylinder in Poiseuille flow between parallel plates. -, 
lubrication theory; a, finite differences method (Dvinsky & Popel 1987b). 

The total force acting on a control volume containing the cylinder (0 < 2 < 1, 
-+A < X < +A) must vanish. The pressure and wall shear forces are 

Fp = d Ap = 1 2 , u ~ ~ A P ,  (2.12) 

From the zero-drag condition (F,+F, = 0) ,  

3I2(+n) -613($.) 
612($x) - 6I3(i.) - 21,($1~) ' 

up = (2.14) 

Resulting values of U p  and AP are given in figure 2, which also shows numerical 
results obtained for the same flow by Dvinsky & Popel (1987a,b), using a finite 
difference form of the Stokes equations. For cylinder diameters from h = 0.6 to h = 

0.8, close agreement is evident. For smaller diameters, lubrication theory increasingly 
overestimates the numerically computed particle velocity, which tends to 1.5 as the 
diameter approaches zero. 
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2.2 .  The applicability of lubrication theory 
In the above example, the equations of lubrication theory were applied uniformly 
over the entire surface of the cylinder. The derivation of these equations is based on 
the assumption that the gap width is narrow compared to the lengthscale of the gap, 
which implies that the slope of the gap boundaries is small. This assumption is clearly 
not satisfied over the entire surface. Even so, lubrication theory gives good 
approximations to U p  and AP over a range of cylinder diameters. A similar 
conclusion was reached by Secomb et al. (1986) for the case of spheres in tubes. 

The following argument suggests the underlying reason for this finding. We note 
that according to (2.4), the pressure gradient decreases in proportion to H-’ as H 
becomes large. Therefore, in the regions where the gap is relatively wide and the slope 
is large, the variations in pressure are much smaller than the variations in the regions 
of smallest gap, where the slope is small. While use of lubrication theory may lead 
to significant fractional errors in the estimated local pressure gradient in large-gap 
regions, these errors are small relative to the total fluctuations in pressure. 

A further relevant property of lubrication theory was noted by Halpern & Secomb 
(1989). An exact similarity solution is available for Stokes flow between two rigid 
planes, one inclined to and sliding over the other, which it meets at one edge 
(Batchelor 1967). The estimates of shear stress and pressure gradient resulting from 
lubrication theory are within 20% of the exact values for angles between the planes 
as large as 45O, and much smaller for smaller angles. This indicates that errors in local 
pressure gradient increase relatively slowly with increasing slope. 

The above arguments indicate that the equations of lubrication theory applied 
uniformly over the entire gap region give good approximations for pressure drop and 
other relevant parameters, even when the gap is not uniformly narrow. Furthermore, 
the examples considered above are ‘worst cases’ in that the region of narrowest gap 
is small compared to the overall gap region. If the gap is uniformly narrow over most 
of the surface of the particle, the relative errors involved in applying lubrication 
theory uniformly are likely to be much smaller than for a cylinder with the same 
minimum gap width. This applies to the disk-shaped particles considered here. 

In  the region beyond the particle, the width of the gap is the distance between the 
two plates. If this spacing is small compared to the other dimensions of this region 
(particle diameter and channel span), we may again introduce the lubrication 
approximations. Since the gap is uniform here, a Hele-Shaw flow results. As pointed 
out by Hele-Shaw (1898), these assumptions lead to discrepancies in tangential flow 
at solid boundaries. To accommodate the no-slip condition, boundary layers 
surrounding the particle and adjacent to the sides of the channel are required. 

2.3.  Lubrication theory for disk-shaped particles 
The flow domain is divided into three regions (figure 3) : 

Region I (flat part of the disk) : 0 < r < rl, h = h, 4 d ;  
Region 11 (curved rim) : rl < r < r2,  h = h(r) ; 
Region 111 (outside the disk) : r 2 r2,  r sin 8 < $, h = d .  

Region rn includes region m a ,  the outer region, region JII~, the boundary layer on 
the particle, and, for finite spans, region IIIC, the boundary layer at the edge of the 
channel. 

We assume that the particle moves with speed -up along the midline of the 
channel. Then, by symmetry, it does not rotate. Axes ( r ,  8, z )  and (2, y ,  z )  are fixed in 
the particle. Boundary conditions are (u, w )  = 0 on the particle surface, and (u, w )  = 
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FIGURE 3. Disk-shaped particle between parallel plates, showing geometric variables and regions 
used in analysis. 

up(cose, -sine) a t  the plates, where u and u are the radial and aximuthal 
components of velocity. Also, uy = 0 a t  y = && where uy = u sin 0 + v cos 8, and (a, e )  
+(up-uo)  ( C O S ~ ,  -sine) far upstream and downstream, where a and zr denote z- 
averages, and -uo is the mean fluid velocity relative to the walls far from the 
particle. 

The lubrication approximation to  Stokes flow is used throughout the flow domain. 
Use of lubrication theory in region 11 is justified according to $2.2, even though the 
gap width is not uniformly small. The pressure is then p(r,e) and the momentum 
equations reduce to 

(2 .15)  

Since the suspending fluid is incompressible, the continuity equation is 

(2.16) 

We non-dimensionalize, setting p ( r ,  0 )  = p(0 ,O)  + 12pu0P(R, @Id, u(r, 8, z )  = 
u0 U(R, e,Z) ,  V ( T ,  8, Z) = u0 V(R,  8, Z ) ,  up  = u0 Up,  R = r / d ,  H = h / d ,  H ,  = h,/d,  
A = a/d, X = x/d, Y = y/d and Z = z/d, and obtain 

(2.17) 

a(RU) aV +- = 0, 
aR ae (2.18) 



Viscous motion of disk-shaped particles 55 1 

with boundary conditions 

(U ,  V )  = U,(cosB, -sine) a t 2  = 0, ( U ,  V )  = kU,(cosO, -sin@ a t  Z = H, 
_ -  

U , = O  a t  Y = + l J ,  (U,V)+(U,-i)(cosO,-sinO) a s x - t k o o ,  (2.19) 

where k = 0 in regions I and 11 and k = 1 in region ~ I I .  Note that these equations are 
formulated for the gap adjacent to  one wall in regions I and 11, and for the entire 
space between the two walls in region III. 

The momentum equations are integrated twice to yield the velocity components 
U and V :  

H 
ap 

U =  6-2(Z-H)+U,cose 

V=--Z(Z-H)-U,sinO 

aR 

6 aP 
R ae 

We define the following flow rates 

ap H 

Q R = I 0  UdZ=-H3-+~(1+k)UpHcos0,  
aR 

H3 aP 
Q o = J o  VdZ=----+(l+k)U,Hsin8. 

H 

R ae 
Equation (2.18) implies that  a(RQ,)/aR + aQ,/aO = 0, that  is 

dH 
R aR dR 

= +(l +k) U,cosO-. 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

This is often referred to as Reynolds' equation (Cameron 1966). 
Equation (2.24) does not have generally an exact closed-form solution for non- 

uniform gaps but can be solved approximately or numerically. It is solved in each 
region and pressure and radial flow rate are matched a t  the boundaries between 
regions, so that 

PI = PI1, Qk = QE a t  R = R,, (2.25) 

P I 1  = P I 1 1  , 2QE =Qg' a t  R=R,,  (2.26) 

where R, = rJd and R, = r,/d. As mentioned earlier, continuity of tangential flow 
rate cannot be imposed at the boundaries of region 111 (R = R, and Y = unless 
boundary layers are introduced. 

3. Solutions for disk-shaped particles 

In  region I, equation (2.24) reduces to:  

3.1. Region I :  flat part of the disk 

since the gap width is constant. The general solution with the required symmetry is : 

CO R 2k+l 

PI = c c, (%) cos (2k+ 1 )  €9, 
k-0 
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where c k  are constants. The radial flow rate is obtained using (2.22) 
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3.2 Region II: curved rim of the disk 
In region 11, from the assumed geometry, 

H = $(l-hcosqi), R = ;Asinqi+R,, (3.4) 
where h = 2w/d and in - qi is the angle between the axis of symmetry and the normal 
to the surface. Since the radius of the disk is large compared to the channel width, 
we treat the flow at each point on the rim as approximately two-dimensional and 
neglect &derivatives. Equation (2.24) becomes 

dH 
(3.5) 

which can be integrated to yield the pressure gradient 

- = iH-2 U p  cos 0 - K (  8)  HW3 where K( 6) = Qi. aPI1 

P I I ( $ , ~ )  = P ~ o , ~ ) + A  [ u , c o s e ~ , ( q i ) - ~ ~ ( $ ) ~ ( e ) ] ,  (3.7) 

(3-6) 8R 

As in 52.1, this can be integrated from 0 to qi yielding 

where I,($) and 13($) are given by (2.9). 
The neglect of &derivatives is based on the assumption that the radius of the 

particle, R,, is much larger than the radius of the rim, $A. For typical red blood cell 
dimensions, the ratio %,/A x 3.6. Halpern (1989) solved (2.24) numerically in this 
case and obtained predictions of Up within 1 % of those obtained using the above 
approximation. 

3.3 Region IIIa: outer region 
Since H = 1, the pressure in the outer region satisfies Laplace’s equation, 

a2p a2p 

ax2 ay2 
-+- = 0, 

in Cartesian coordinates. The boundary conditions (2.19) imply that 

a P / a Y  = 0 at Y = f$4, aP/aX+ 1 as X+f 00. (3.9) 
This problem can be solved using potential theory (Howland 1934; Halpern 1989). 
We let Y = X+iY. The boundary conditions a t  !?’= +$iA can be satisfied by 
representing the solution as a periodic function with singularities located a t  (0, PA), 
where p takes all integer values. One such complex potential function is 

i!P O3 5(2p) (iA7’P 
= logsinin!P/A =-log-+ - - , 

A p-1 P 
(3.10) 

where the power series representation is convergent for I 
zeta function of integer argument : 

< A ,  and 5 is the Riemann 

m r  

(3.11) 
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Further potential functions with the desired properties are 

1 dna0  Gn = ___- 
(n- l ) !  dYn ' 

(3.12) 

since QTn also satisfies aGn/i3Y = 0 on Y = +$.A. We require only odd functions of Y, 
for which n is odd. These are: 

where 5(2(m+s+ 1) ) .  
(2(m+s)+ I ) !  

= (2m+ 1)!(2s)! 

(3.13) 

(3.14) 

Since the pressure is even in Y and odd in X, we take the real part, P, = Re : 

(3.15) 
C O S ( 2 S + l ) B  1 a, P, = ( -  1)s 

in polar coordinates. The pressure in region 111 can be expressed as a sum of such 
terms : 

PIrr = RcosO+ C B,P,, 
m 

(3.16) 
s-0 

where B, are unknown constants. The radial flow rate is 

(3.17) 

For the case A +co (infinite span), B, = 0 for s > 0 and Po = R-' cos 0. 

3.4 Region IIIb : boundary layer around the particle 
The matching conditions (2.25) and (2.26) can be satisfied by solving for the 
coefficients C, and B, in regions I and III. However, the azimuthal flow rate cannot 
be matched at  R = R,, and the jump in Qs from region 11 to ITI is O( 1). The jump can 
be removed by inserting a boundary layer of width O(1) around the edge of the 
particle. This boundary layer itself generates a small radial flow. 

In the boundary layer, variations in the R and 2 directions dominate those in the 
8 direction, and the Stokes momentum equation in the tangential direction reduces 
to 

(3.18) 

where R = R,+R and a/aE g l/R,a/ae. As usual in boundary-layer theory, the 
pressure is assumed not to vary across the boundary layer, and is given by Pir1, the 
unperturbed pressure field evaluated at R = R,. Let V = VII1+ V,, where, from (2.21), 

(3.19) 

Hence (3.20) 
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The boundary conditions are : V, = 0 at 2 = 0 and 2 = 1, and V, = V,(Z, 0)  at R = 
0, where K + VII1 is the tangential velocity at the interface between region 11 and the 
boundary layer. To determine V, exactly would,require the solution of the Stokes 
equations in region 11 and the boundary layer. However, V, is constrained by several 
boundary conditions. At the walls (2 = 0 and 2 = 1),  V, = 0 and, from (3.20), 
azK/aZz = 0. At the particle (2 = g), V, + VII1 = 0 to satisfy the no-slip condition. Also, 
& must be symmetric about 2 =a.  A polynomial approximation to V, may be 
constructed by imposing these conditions. If a fourth-order polynomial is used, it is 
given uniquely by 

K(2, 8)  = aZ(2- 1) (Z2-2- i),  

where 

The solution to (3.20) is obtained by separation of variables: 

The total change to the circumferential flow in the boundary layer is 

1 "  1 
AQ, = J:l &dZ@ = 192a7a, where an = - 

7tnk-O(2k+ 1 ) n '  

Thus, by continuity, the radial flow generated by the boundary layer is 

1 dQ, - 192a7 da 
R -  R, do R, do' 

AQ - 

and the matching conditions (2.26) then become 

PI1 = PIII, &:'-A&, = 2QE at R = R,. 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

If a sixth-order polynomial approximation to V, is assumed instead, one unknown 
parameter is introduced. If the physically reasonable restriction is imposed that V, 
remains monotonic in 2 on [0, $1, the resulting change in AQR is about 20%, at most. 

The result of imposing the no-slip condition at  the edge of the particle and 
introducing the boundary layer is to create a region in which the fluid tends to move 
with the particle. We might expect that the resulting external flow field is the same 
as for a slightly larger particle moving with the same velocity, analysed using the 
Hele-Shaw assumptions. Let 6 be the displacement thickness, where 

(3.27) 

Then, using the continuity equation (2.18), it is easily shown that imposing the 
modified boundary condition (3.26) on QE1 at R = R, is equivalent to imposing the 
original boundary condition (2.26) at R = R,+S, neglecting O(S2) terms. When the 
span is infinite, 6 is independent of 8 ,  and 

6 = So[l +R,2B,-~U,]/[i+R,2Bo-U,], (3.28) 

where So = 4608a7/5 z 0.3, the displacement thickness when Up = 0. For finite 
spans, S varies around the circumference. 
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3.5. Regions IIIc: boundary layers at the channel walls 
For finite span channels, boundary layers are present adjacent to the walls at 
Y = +id. We assume that the flow does not vary rapidly in the X-direction near the 
walls. Using methods analogous to 93.4, the velocity in the X-direction is found to 
be 

a p I I I  
U =  V1'+U1 where U111=6&Z(Z-1)+U,, (3.29) 

exp [ - (2k + 1 )  nP] sin (2k + 1 )  nZ, (3.30) 
4 8 a p y  ~1 u ---x - 7 ~ 3  ax k-O(2k+1)3 

and Y = &4 - yI. The flow change in the boundary layer and the transverse flow rate 
generated by the boundary layer are: 

a 2 p I I I  

AQy = - 9 6 ~ ~ ~ 1  (3.31) 
apy 
ax ax2 * 

AQX = 9 6 ~ ~ ~ -  

As in the previous section, the displacement thickness can be defined: 

8, = -AQx/ (U1Ir-U,)dZ = 9 6 ~ ~ ~  x 0.32. (3.32) 

The boundary layers at  the walls can be shown to have the same effect on the outer 
region as reducing the channel span by an amount 28, in the Hele-Shaw solution. 

3.6. System of equations 
To determine the Fourier coefficients Ck in region I and B, in region 111, we apply the 
matching conditions (2.25) and (3.26). At the boundary between regions I and 11, 

matching the radial flow rates (3.3) and (3.6) gives: 

1 

(3.33) 

where Po = iHc u p - C o ~ / R l ,  /3k = - (2k+ 1 )  ckpc/R1 for k > 0, (3.34) 

By matching pressures (3.2) and (3.7) at R = R,, we deduce the pressure at  R = R,: 
m 

k-0 
P"(R,, 8 )  = x y k  cos (2k+ 1 )  8, (3.35) 

where yo = G o C o + ~ ( ~ 2 ( ~ n ) - ~ 3 ( ~ n ) ~ c ) U ~ ,  Yk = GkCk for k > 0 (3.36) 

and Gk = 1 + 4 ( 2 k + 1 ) A Z 3 ( ~ n ) ~ R ; 1  for all k. (3.37) 

Next, we apply the matching conditions a t  R = R,. Matching pressures implies 

(3.38) 

that 
W 

yo = R,+R,'B0+~*R;' x a08B8, 
s-0 

(3.39) 

where (3.40) 
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Matching the radial flow rates implies that  
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1-357 E2(1+357)  5 a 0 s B s + $ ( 1 + 2 f [ 7 ) U p - $ ( 1 + 3 ~ 7 ) ,  (3.41) 

PI,  = ( -  1)*2k+l((l-3(2k+ 1) t 7 ) B k - ( l  +3(2k+ 1)  6,) x a,,R,), (3.42) 

2% s-0 
P o  = F B o -  

m 

Bik+, s=o 

for k > 0, where 5, = 1536u7/5R,. 

cylindrical control volume containing the particle : 
To obtain the zero-drag condition, we consider the balance of forces acting on a 

Fp+Fb+Fr = 0, (3.43) 

where Fr gives the shear force on the walls, Fp gives the pressure force and Fb is the 
force due to the shear stresses in the boundary layer surrounding the particle: 

(3.44) 

Let Fr = F: + F:* 
respectively. Then 

where F: and Ffl are the contributions from regions I and 11 

(3.45) 

F:' = -27t,~~~dR,h(51,($7t) U p -  121z($)/?o), (3.46) 

where the two-dimensional approximation has been used to calculate F:' and 12($t) 
and I.&) are given in $2.2. From (3.36), (3.44) and (3.25) 

Fp = 1 27tp~, dR, yo ,  (3.47) 
m 

Fb = 21~pu, 3Ri + 3B0 + 3s2 C aos B, - 2Ri U p ) ,  (3.48) ( s-0 

( s-0 

where 6, = 768~~,/5R,. The zero-drag condition (3.47) gives : 
m 

R, c ~ -  hl~(in) PO -GR2 Y0-365 B~ -ks2 x Bs)  

+ (R; /H,  + 5X1(;7t) R, + 25,Ri) U p  - 3c5 Ri = 0. (3.49) 

Equations (3.35), (3.37)-(3.42) and (3.49) form a linear system in terms of the 
particle velocity, U p ,  and the geometrical parameters H,, R,, R ,  and A ,  which may 
be solved uniquely for the unknown coefficients and the particle velocity. 
Corresponding equations for infinite span (a+oo) may be obtained by setting e = 0 
in the above, while the boundary-layer effects may be excluded by omitting terms 
containing c5 and &. 

4. Results 
First, results are given for infinite span (a  +a). In this case, the pressure P(R, 8) 

is proportional to cos8. Figure 4 shows P(R,O) for three values H,. When the 
minimum gap width is small ( H ,  = 0.0185), very large pressure gradients are 
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FIQURE 4. Radial variation of pressure P on the symmetry plane 0 = 0, for values of gap width 
H ,  as shown. 
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FIGURE 5. Variation of U p  and S with H,. -, U p  without boundary layer; ----, U, with 
boundary layer ; . . . . . . , Up with particle radius increased by So; -. -, 6. 

produced in region II, as a result of the variation of the gap width. The pressure 
changes in region 11 produce a reversal of the pressure gradient in region I. As the 
minimum gap width increases, the perturbation to the pressure due to the particle 
decreases, and the pressure gradient changes sign when H, x 0.034. 

The variation of predicted particle velocity U p  with gap width H ,  is shown in figure 
5, for infinite span. Particle velocity increases with increasing H ,  and is equal to the 
mean bulk velocity when the width of the particle is about 70 % of the channel width. 
Including the boundary layer around the particle increases U p ,  by a percentage 
which varies from about 25 % at low velocities to 10 % at high velocities. Figure 5 
also shows the effect of increasing R, by a fixed amount So, independent of Up. At low 
velocities, this has the same effect as inclusion of the boundary layer, as suggested 
in $3.4. However, this analogy breaks down at  higher velocities owing to the 
interaction between particle velocity and the external pressure field. The variation 
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FIQURE 6. Effect of finite span ( m  > 0) on particle velocity U p .  Urn is corresponding velocity for 
infinite span (u = 0). -, without boundary layers; --, with boundary layers. 

of displacement thickness 6 with H ,  is shown in figure 5 .  When the velocity of the 
particle approaches the mean bulk velocity, the denominator in (3.27) becomes small 
and 6 increases rapidly. 

Figure 6 shows the effects of finite channel span. The ratio of U p  to U,, the particle 
velocity for infinite span, is shown for three values of u = 2r,/a, the ratio of particle 
diameter to channel span, with and without boundary-layer effects. Restricting the 
span has the effect of increasing particle velocity. This effect is greatest for slowly 
moving particles, i.e. narrow gaps. As u increases (i.e. span decreases) the velocity 
increase resulting from inclusion of boundary layers results is amplified. In  particular, 
when CT = 0.6, the effective pathway available for fluid to flow around a slowly 
moving particle is substantially reduced by the inclusion of boundary layers on the 
particle and the channel edges. 

Figure 7 shows pressure contours in the flow domain for two gap widths. For very 
narrow gaps (Figure 7 a ) ,  the pressure variation is inverted in region I, and the 
pressure gradient is greatest in region 11. For a larger gap width (Figure 7 b ) ,  the 
particle velocity is close to  the mean bulk velocity and the external field is only 
slightly perturbed by the particle. 

5. Conclusions 
The motion of a tightly-fitting red blood cell through a narrow slot may be 

approximated by the motion of a thin disk-shaped particle with rounded edges in the 
space between two parallel flat plates. Although red blood cells are deformable, the 
fluid mechanics of this motion may be investigated by considering rigid particles 
with this ' critical ' shape. 

Approximate solutions to the governing equations are obtained by applying 
lubrication theory throughout the flow domain. At the rounded edges of the particle, 
the formal assumptions of lubrication theory are not satisfied. However, analysis of 
the motion of a cylinder between two parallel plates and comparison with solutions 
obtained by Dvinsky & Pope1 (1987 b )  shows that lubrication theory yields a good 
approximation. In the region beyond the particle, application of lubrication theory 
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FIQURE 7 .  Contours of pressure, including boundary-layer effects. (a) H, = 0.0272, u = 0.4, 

Up=0.44.(b)H,=0.14,u=0.4,  U p = 1 . 0 5 .  

leads to a problem analogous to the Hele-Shaw cell, in which the no-slip condition is 
relaxed at  the boundaries. Inclusion of boundary layers allows the no-slip condition 
to be satisfied. These boundary layers can significantly increase the particle velocity. 

The predicted particle velocity can be smaller or larger than the mean bulk 
velocity, depending on the channel dimensions, and tends to zero as the gap width 
tends to zero. For infinite-span channels, particle velocity approaches mean bulk 
velocity when the particle width is about 70% of the channel width. Decreasing the 
channel span decreases the space available for fluid to flow around the particle, 
leading to increased particle velocity. 
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In cylindrical tubes, axisymmetric particles always travel faster than the mean 
bulk flow (Halpern & Secomb 1989). If the particle is tightly fitting, the driving 
pressure in the tube is concentrated across the particle, and the mean bulk velocity 
is reduced. In a channel, the situation is different in that fluid can bypass the particle, 
and the pressure drop is not concentrated in the immediate vicinity of the particle. 
For infinite-span channels, the maximum pressure gradient experienced by the 
particle is twice the pressure gradient in the absence of the particle. 

The tendency of red blood cells to travel faster than the mean flow in cylindrical 
tubes leads to the Fahraeus effect: the volume fraction of red blood cells 
(haematocrit) within the tube is less than their fractional contribution to the flow 
entering and leaving the tube (Secomb et al. 1986). Conversely, when the red cell 
velocity in a slot is lower than the mean velocity, the haematocrit in the slot is 
increased. This probably contributes to the observation that the haematocrit in the 
spleen is higher than in other parts of the body (Gibson et al. 1946). 

This work was supported by National Institutes of Health grants HL34555, 
HL17421 and HL07249. The above work has been performed in partial fulfilment of 
the requirement for the Ph.D. degree of D.H. a t  the University of Arizona. 
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